手心红是什么原因| 册封是什么意思| 肾衰竭五期是什么意思| 煤气是什么气体| 宫颈lsil是什么意思| 一米阳光是什么意思| 菓是什么意思| 异想天开什么意思| 月子餐第一周吃什么| 结节性硬化症是什么病| 福州有什么好玩的地方| 什么球不能拍| 气是什么意思| 治疗勃起困难有什么药| 盐酸舍曲林片治疗什么程度的抑郁| 查验是什么意思| 保妇康栓治疗什么妇科病| 湛江有什么好玩的| 什么食物嘌呤高| 带状疱疹挂什么科室| 硒是什么| 貔貅是什么动物| 心脏做什么检查最准确| 湿气重吃什么蔬菜| 失不出头念什么| 处暑是什么节气| 游戏是什么| 基因是什么意思| 钢琴是什么乐器种类| 12月21日什么星座| 版图是什么意思| 岱字五行属什么| 尿酸高是什么意思| 烟酒不沾的人什么性格| 白蛋白低是什么原因| 10pcs是什么意思| 姨妈痛吃什么药| 卵巢囊性回声什么意思| 辅酶q10什么时候吃| esr是什么| 有什么花| 阿胶什么季节吃最好| 防字代表什么生肖| 龙的本命佛是什么佛| 灵敏度是什么意思| 什么的蜡烛| 是否是什么意思| 吃马齿苋有什么好处| 肚子特别疼是什么原因| 6月15日什么星座| 男性小便出血是什么原因| 什么果酒最好喝| 20岁属什么| 昆仑山在什么地方| 心悸是什么意思啊| 正畸是什么意思| 脾胃不好吃什么水果好| 鼻咽癌是什么| 黄精有什么作用| 宇舶手表什么档次| 梦见小兔子是什么意思| 嫩黄的什么| 做梦吃酒席什么预兆| 小孩吃火龙果有什么好处| 共情能力是什么意思| 5月出生是什么星座| 阳虚是什么原因引起的| logo中文是什么意思| 肝是起什么作用的| 1884年属什么生肖| 伤口感染化脓用什么药| 胎盘厚有什么影响| 十二月份的是什么星座| 肚子中间疼是什么原因| 补体c4偏低是什么意思| 左胸隐隐作痛是什么原因| 失眠睡不着吃什么药好| 山药什么季节成熟| 敏感肌是什么样的| 420是什么意思| fsa是什么意思| 喝可乐有什么危害| 日加华念什么| 什么是红曲米| 辜负什么意思| 文胸是什么| 痔疮坐浴用什么药效果好| 为什么月经来是黑色的| 什么是形声字| 什么颜色加什么颜色等于黑色| 考研都考什么科目| 路征和景甜什么关系| 救世主是什么意思| 101什么意思| 梦到被猪咬是什么意思| 啵啵是什么意思| 克感敏又叫什么| 达芬奇是干什么的| 养殖什么赚钱| 什么样的情况下需要做肠镜| 牙周炎挂什么科| 肌酐高是什么意思| 什么样的浪花| 男人眼袋大是什么原因造成的| 长辈生日送什么花| 朱迅和朱军是什么关系| 脾湿热吃什么中成药| 老年斑用什么药膏可以去掉| 崖柏手串有什么功效| 拉肚子可以喝什么饮料| fila是什么牌子| 大将军衔相当于什么官| 全身酸痛吃什么药好| 长期吃阿司匹林有什么副作用| 脑门疼是什么原因| 脑供血不足头晕吃什么药| 取缔役什么意思| 68年属什么| 吃的少还胖什么原因| 梦见老公不理我是什么意思| 心肌炎什么症状| 白羊座跟什么星座最配| 背部毛孔粗大是什么原因| suv什么意思| 3月25号是什么星座| 什么时候买机票便宜| 摔伤用什么药好得快| 眼压高用什么眼药水| 手机信号不好是什么原因| 进击的巨人真相是什么| 孕妇贫血吃什么补血最快| 什么牌子的笔记本电脑好| 孔子名叫什么| 什么是丹凤眼| 上24休24是什么意思| 淋巴结肿大看什么科室最好| 含义是什么意思| 广州五行属什么| 为什么得带状疱疹| 饭后呕吐是什么原因引起的| 月经多是什么原因| 国家电网是什么单位| 魏大勋什么星座| 减肥吃什么最好| 承你吉言是什么意思| 镜子是什么生肖| 出差什么意思| 口咸是什么原因引起的| 身上起红疹是什么原因| 蒙脱石散是什么药| 血压高有什么症状| 剪不断理还乱是什么意思| 脚背麻木是什么原因| 假性宫缩是什么感觉| na是什么| 脸上出汗多是什么原因| 立夏什么时候| 胎儿头偏大是什么原因| 心理素质是什么意思| 产复欣颗粒什么时候吃| 相位是什么意思| 嗜是什么意思| 去湿气喝什么好| 一龙一什么| 脉浮是什么意思| 身上有红点是什么病| 精华液是干什么的| 3.3是什么星座| 肝五行属什么| 医院测视力挂什么科| 鲍鱼什么意思| 头孢治疗什么| 蚊子是什么动物| 幻听是什么原因| 痞气是什么意思| 龙凤呈祥的意思是什么| 上海有什么特色美食| 贫血吃什么补血| 跌倒摔伤用什么药| gypsophila什么意思| 奚字五行属什么| 中华田园犬为什么禁养| 寓言故事有什么特点| 眼皮肿痛什么原因| 半斤八两什么意思| 11月24日是什么星座| 易烊千玺原名叫什么| 没必要什么意思| 手心脚心热是什么原因| 左眼屈光不正是什么意思| 憨是什么意思| 粘米粉是什么米做的| 新加坡为什么说中文| 梦见监狱是什么意思| rp是什么| 短效避孕药什么时候吃| 什么酷暑| 值神天德是什么意思| 类风湿阳性是什么意思| 参片泡水喝有什么功效| 耳根子软是什么意思| sherpa是什么面料| 安痛定又叫什么| 备孕男性吃什么精子强| 高血压能吃什么水果| rh血型阴性是什么意思| 经常爱放屁是什么原因| 为什么会牙痛| 支气管舒张试验阳性是什么意思| 胖大海和什么搭配最好| 3岁小孩说话结巴是什么原因| 1988年是什么生肖| 孑孓什么意思| 月经不来要吃什么药| 六月初五是什么星座| 什么玻璃| 蜘蛛侠叫什么| 空调抽真空是什么意思| 查血常规挂什么科| 鼻子流黄水是什么原因| 脂肪肝看什么指标| 青光眼是什么症状| 腹泻是什么症状| 交通运输是干什么的| 胆红素高有什么症状| 肝部有阴影一般都是什么病| 汐字五行属什么| 什么是德训鞋| 生肖本命带红花是什么生肖| 老舍原名什么| 怀孕吃什么好| 梦见钓了好多鱼是什么意思| 农历3月是什么星座| 奇亚籽有什么功效| 压箱钱是什么意思| 中二病是什么意思| 甘地是什么种姓| 天麻不能和什么一起吃| 肝郁气滞血瘀吃什么药| 螺旋菌感染有什么危害| 什么车性价比最高| 牛栏坑肉桂属于什么茶| 梦见自己输液是什么意思| 中午适合吃什么| 过年是什么时候| bml是什么| 林子祥属什么生肖| mrt是什么意思| 可好是什么意思| 深化是什么意思| 前白蛋白低是什么原因| 左眼皮上有痣代表什么| 小儿积食吃什么药最好| 脚麻吃什么药有效| 顺其自然是什么意思| 罗锅是什么意思| 妙赞是什么意思| 白矾和明矾有什么区别| 贼眉鼠眼是什么生肖| 饭圈是什么意思| 狗狗拉血是什么原因| 过敏性紫癜千万不能用什么药| 血沉高是什么病| 无故流鼻血是什么原因| 百度

陕西大田微喷网式过滤器 榆林小麦微喷带热卖

百度   如今的菜场宽敞明亮,找不到上世纪80年代上海大部分露天菜场的影子。

With the explosive growth of time-series data in recent years, led by increasing adoption of IoT technologies, the processing of this data has become a challenging task for enterprises across many industries. As traditional general-purpose databases and data historians are seldom able to handle the scale of modern time-series datasets, there is a trend toward deploying a purpose-built time-series database (TSDB) as a core part of the industrial data infrastructure. And considering the requirements of time-series data processing, high scalability has become an essential component for a modern time-series database.

Distributed Design

In a distributed architecture, the components of a system are spread across multiple nodes instead of being centralized in a single location. The decoupling of compute and storage resources is particularly important in a time-series database context because it enables these components to be scaled independently and more quickly than a tightly coupled system.

Furthermore, by replicating data and services across multiple nodes, distributed systems can continue to function even if some of the nodes fail. This is essential for fault tolerance and disaster recovery. And by distributing processing tasks across multiple nodes, distributed systems can achieve better performance than centralized systems. This is because the workload is spread out, allowing each node to focus on a smaller subset of tasks, which can be completed more quickly. As time-series data platforms are often ingesting and processing large amounts of data 24 hours a day, they benefit greatly from the fault tolerance and enhanced performance provided by a distributed design.

Finally, distributed systems do not require custom, ultra-high-end servers or expensive and restrictive software licenses. Instead, they can make use of commodity hardware and open-source software, and for that reason can be built more cost-effectively than centralized systems.

Since version 3.0, TDengine features a fully distributed architecture in which tasks are divided among nodes in a cluster.

As shown in the figure, a TDengine cluster consists of one or more data nodes (dnodes). A dnode is a instance of the TDengine server running on a physical machine, virtual machine, or container. Each dnode is logically subdivided into virtual nodes (vnodes), query nodes (qnodes), stream nodes (snodes), and management nodes (mnodes), of which vnodes are used for storage and qnodes are used for compute. By deploying vnodes and qnodes on different dnodes, TDengine implements the separation of storage and compute: a fault occurring on a vnode does not affect any qnodes, and vice versa, and qnodes and vnodes can be scaled in or out separately.

Scalability

A high level of scalability ensures that systems and processes can accommodate increasing demand. This is facilitated by the distributed design mentioned above. Because workloads are processed by multiple decentralized nodes, it is easy to add more nodes to handle larger amounts of data without overloading any single node; likewise, it is easy to remove nodes in the event that requirements change and resources need to be reallocated.

Scalability is particularly important at this stage because time-series datasets are rapidly increasing in scale. As a business grows, the amount of data passing through its pipelines can only become larger, meaning that existing data infrastructure must be expanded to meet new business requirements. Scalability also helps to reduce costs associated with expanding or upgrading data systems, adding resources incrementally as needed rather than in large and expensive blocks.

To achieve scalability for massive data sets, TDengine shards data by data collection point and partitions data by time.

In TDengine, all data from a single data collection point is stored on the same vnode, though each vnode can contain the data of multiple data collection points. The vnode stores the time-series data as well as the metadata, such as tags and schema, for the data collection point. Each data collection point is assigned to a specific vnode by consistent hashing, thereby sharding the data from multiple data collection points across different nodes.

In addition to sharding the data, TDengine partitions it by time period. The data for each time period is stored together, and the data of different time periods cannot overlap. This time period is a configurable value of one or multiple days. Partitioning data by time also enables efficient implementation of data retention policies as well as tiered storage.

TDengine also enables enhanced scalability by resolving the issue of high cardinality. In TDengine, the metadata for each data collection point is stored on the vnode assigned to the data collection point instead of a centralized location. When an application inserts data points to a specific table or queries data on a specific table, the request is sent directly to the appropriate vnode. For aggregation on multiple tables, the query request is sent to the corresponding vnodes, which perform the required operation, and then the qnode aggregates the query results from all vnodes involved. This allows TDengine to deliver high performance even as the cardinality of a dataset increases.

Elasticity

Elasticity refers to the ability of a system to dynamically provision and deprovision resources based on changes in demand. Automating the process of scaling resources up or down on an as-needed basis enables data systems to handle sudden spikes in workload and to accommodate growth over time while maintaining optimal performance and avoiding downtime. This builds on the scalability mentioned previously and takes it one step further into the cloud.

By providing elasticity, your time-series database can respond quickly to changing business needs, opportunities, or challenges. You can launch new services, products, and applications quickly and efficiently without worrying about resource constraints — additional nodes are deployed on demand to ensure adequate performance. You can also match resource consumption to actual demand in real time: using only the resources that are required at a particular moment prevents overprovisioning and unnecessary costs.

To support storage elasticity, TDengine automatically splits or combines vnodes based on the situation. If write latency reaches a specified threshold, TDengine can split vnodes so that more system resources will be allocated for data ingestion. However, if the system can guarantee latency and performance, TDengine may combine multiple vnodes into a single vnode to save resources.

For compute elasticity, TDengine makes use of the qnode. While simple queries such as fetching raw data or rollup data can still be performed on a vnode, those queries that require sorting, grouping, or other compute-extensive operations are performed on a qnode. Qnodes can run in containers and can be started or stopped dynamically based on the system workload. By using qnodes, TDengine is an ideal data analytics platform for time-series data, including real time analytics and batch processing, because the compute resources are nearly infinite and elastic in a cloud environment.

Resilience

Modern software design understands that problems will occur and provides resilience to recover quickly from faults and ensure business continuity. High availability and high reliability are key components of resilience.

For a time-series database, high availability is achieved by replicating data across multiple nodes; if one node fails, another can take its place and the database can continue to provide services. The database system must ensure appropriate data consistency and have a mechanism for establishing consensus. To implement high reliability, a traditional write-ahead log (WAL) is still an excellent option.

With a highly available and highly reliable time-series data platform, you can be sure that your data is accurate and that it can be used by your applications when you need it. In addition, this kind of resilience can help reduce costs associated with disruptions by minimizing downtime and reducing the need for recovery efforts.

TDengine provides resilience through its high reliability and high availability design. For any database, storage reliability is the top priority. TDengine uses the traditional write-ahead log (WAL) to guarantee that data can be recovered even if a node crashes. Incoming data points are always written into the WAL before TDengine sends an acknowledgement to the application.

TDengine provides high availability through data replication for both vnodes and mnodes. Furthermore, vnodes on different dnodes can form a virtual node group (vgroup). The data in each vgroup is synchronized through the Raft consensus algorithm to ensure its consistency. Data writes can only be performed on the leader node, but queries can be performed on both the leader and followers simultaneously. If the leader node fails, the system automatically selects a new leader node and continues to provide services, ensuring high availability.

For metadata, a TDengine cluster can include three mnodes that also use Raft to maintain consistency. TDengine implements strong data consistency for metadata; however, for performance reasons, eventual consistency is used for time-series data.

Automation

Automation is a critical component of infrastructure and application management. For a time-series database to be truly scalable, its deployment, management, and scaling itself must be supported by automated processes.

Automation also ties into resilience and scalability: automated failover and disaster recovery mechanisms enhance the resilience of systems, while automated provisioning and deprovisioning of infrastructure resources enhances their scalability.

Going further, automation enables consistency across environments by enforcing unified policies and configurations across all components of the system. With a time-series database that supports a high level of automation, you can be sure that your nodes and infrastructure are configured correctly and consistently, reducing the risk of errors or security vulnerabilities. It also greatly enhances portability, enabling deployment across various cloud platforms in addition to on-premises and hybrid environments.

TDengine can be deployed in a Kubernetes environment using standard procedures, either with a Helm chart or with the kubectl tool. After you configure TDengine as a StatefulSet in Kubernetes, each node in your cluster is created as a pod. You can then use Kubernetes to scale your cluster in or out on demand, in addition to other operations and management tasks.

Observability

Observability provides a comprehensive view of system performance and behavior, allowing you to detect problems quickly and address them before they cause significant downtime or service disruptions. Given the critical nature of the time-series database in the overall data infrastructure, observability is an indispensable characteristic for identifying and addressing bottlenecks, optimizing resource utilization, and improving system performance and reliability.

A time-series database must integrate with observability systems to enable real-time visibility into system behavior. This integration lets enterprises not only optimize system performance, but also maintain compliance and improve customer satisfaction due to decreased downtime.

TDengine monitors the system status by collecting metrics such CPU, memory, and disk usage in addition to database-specific metrics like slow queries. The taosKeeper component of TDengine can send the metrics to other monitoring tools like Prometheus, allowing TDengine to be integrated with existing observability systems. and more. In addition, the TDinsight component integrates with Grafana, providing a dashboard for visualization and alerting.

Conclusion

Considering the growing size of datasets across industries, modern time-series databases must be highly scalable today to meet the business requirements of tomorrow. A distributed design is necessary to build the scalable, fault-tolerant, and high-performance systems that are required for handling time-series datasets. And by leveraging cloud-native technologies and principles in their data infrastructure, enterprises can achieve better business outcomes, faster time-to-market, higher customer satisfaction, and increased revenue.

Through its natively distributed design, data sharding and partitioning, separation of compute and storage, Raft for data consistency, and more, TDengine provides the scalability, elasticity, and resilience needed for time-series data processing. By supporting containers, Kubernetes, comprehensive monitoring metrics, and automation scripts, TDengine can be deployed and run on public, private or hybrid clouds as a cloud-native solution. With a scalable time-series database like TDengine, your systems can handle the demands of modern computing and provide reliable, high-quality services to customers around the world.

眩晕呕吐是什么病 得艾滋病有什么症状 糍粑是什么做的 胆碱酯酶低是什么原因 肠癌有什么症状
率性是什么意思 傻白甜的意思是什么 吃什么长肉 月经期间吃什么水果好 什么叫精神出轨
为什么客厅不能放假花 美乃滋是什么 三个火读什么 心脏缺血吃什么药 4个火读什么
什么时候期末考试 牙疼吃什么药 上次闰六月是什么时候 什么而去的四字词语 心里难受想吐是什么原因
饭后腹胀是什么原因hcv8jop3ns8r.cn 交杯酒是什么意思hcv8jop0ns3r.cn 动车跟高铁有什么区别hcv7jop9ns1r.cn 女红是什么意思hcv7jop7ns1r.cn 牙神经疼吃什么药hcv7jop9ns7r.cn
close是什么意思weuuu.com 临床是什么意思yanzhenzixun.com 榻榻米是什么hcv9jop4ns8r.cn 静脉曲张不治疗会有什么后果hcv8jop0ns8r.cn 佛珠生菇讲述什么道理hcv8jop7ns7r.cn
小孩脚麻是什么原因hcv8jop8ns4r.cn 一个山一个脊念什么hcv8jop5ns3r.cn 新生儿黄疸是什么原因引起的hcv7jop5ns1r.cn 1994年什么命hcv7jop7ns1r.cn 梦见猫头鹰是什么预兆hcv8jop8ns2r.cn
宝是什么生肖hcv9jop4ns1r.cn 巨细胞病毒抗体阳性是什么意思jasonfriends.com 女人做梦哭醒预示什么creativexi.com 孙悟空头上戴的是什么hcv8jop8ns9r.cn 生命之水是什么hcv7jop9ns5r.cn
百度